Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1245589.v1

ABSTRACT

Since the initial detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) in November 2021 in South Africa, it has caused a rapid increase in infections globally. The Omicron variant encodes 37 amino acid substitutions in its spike protein, and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness. We assessed serum neutralizing activity in sera from Delta infection following vaccination of CoronaVac or ZF2001 and Delta infection only against SARS-CoV-2 Wuhan-Hu-1 (WA1), Beta, Delta, and Omicron. We found that sera from Delta infection only could neutralize WA1 and Delta pseudoviruses but nearly completely lost capacity to neutralize Beta and Omicron pseudoviruses. However, Delta infection following vaccination resulted in a significant increase of serum neutralizing activity against WA1, Beta, and Omicron. This study demonstrates that breakthrough infection of Delta in previously vaccinated individuals substantially induced high potency humoral immune response against the Omicron variant and other emerged variants.


Subject(s)
Coronavirus Infections
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.02.276865

ABSTRACT

Recent studies have characterized the single-cell immune landscape of host immune response of coronavirus disease 2019 (COVID-19), specifically focus on the severe condition. However, the immune response in mild or even asymptomatic patients remains unclear. Here, we performed longitudinal single-cell transcriptome sequencing and T cell/B cell receptor sequencing on 3 healthy donors and 10 COVID-19 patients with asymptomatic, moderate, and severe conditions. We found asymptomatic patients displayed distinct innate immune responses, including increased CD56briCD16- NK subset, which was nearly missing in severe condition and enrichment of a new Th2-like cell type/state expressing a ciliated cell marker. Unlike that in moderate condition, asymptomatic patients lacked clonal expansion of effector CD8+ T cells but had a robust effector CD4+ T cell clonal expansion, coincide with previously detected SARS-CoV-2-reactive CD4+ T cells in unexposed individuals. Moreover, NK and effector T cells in asymptomatic patients have upregulated cytokine related genes, such as IFNG and XCL2. Our data suggest early innate immune response and type I immunity may contribute to the asymptomatic phenotype in COVID-19 disease, which could in turn deepen our understanding of severe COVID-19 and guide early prediction and therapeutics.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.27.267716

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) becomes a tremendous threat to global health. Although vaccines against the virus are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulated the three-dimensional structures of SARS-CoV-2 proteins with high performance computer, predicted the B cell epitopes on spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches, and then validated the epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induced antibody production, six of which were immunodominant epitopes in patients identified via the binding of epitopes with the sera from domestic and imported COVID-19 patients, and 23 were conserved within SARS-CoV-2, SARS-CoV and bat coronavirus RaTG13. We also found that the immunodominant epitopes of domestic SARS-CoV-2 were different from that of the imported, which may be caused by the mutations on S (G614D) and N proteins. Importantly, we validated that eight epitopes on S protein elicited neutralizing antibodies that blocked the cell entry of both D614 and G614 pseudo-virus of SARS-CoV-2, three and nine epitopes induced D614 or G614 neutralizing antibodies, respectively. Our present study shed light on the immunodominance, neutralization, and conserved epitopes on SARS-CoV-2 which are potently used for the diagnosis, virus classification and the vaccine design tackling inefficiency, virus mutation and different species of coronaviruses.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.269043

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19) started at the end of 2019 in Wuhan, China has spread rapidly and became a pandemic. Since there is no therapy available that is proven as fully protective against COVID-19, a vaccine to protect against deadly COVID-19 is urgently needed. Nucleocapsid protein (N protein), is one of the most abundant proteins in coronaviruses and is a potential target for both vaccine development and point of care diagnostics. The variable mass of N protein (45 to 60 kDa), suggests the presence of post-translational modifications (PTMs), and it is critical to clearly define these PTMs to gain the structural understanding necessary for further vaccine research. There have been several reports suggesting that the N protein is phosphorylated but lacks glycosylation. Our comprehensive glycomics and glycoproteomics experiments confirm that the N protein is highly O-glycosylated and also contains significant levels of N-glycosylation. We were able to confirm the presence of O-glycans on seven sites with substantial glycan occupancy, in addition to less abundant O-glycans on four sites. We also detected N-glycans on two out of five potential N-glycosylation sites. Moreover, we were able to confirm one phosphorylation site. Recent studies have indicated that the N protein can serve as an important diagnostic marker for coronavirus disease and a major immunogen by priming protective immune responses. Thus, detailed structural characterization of the N protein may provide useful insights for understanding the roles of glycosylation on viral pathogenesis and also in vaccine design and development.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.27.269456

ABSTRACT

The emergence of COVID-19 as a pandemic with a high morbidity rate is posing serious global concern. There is an urgent need to design a suitable therapy or vaccine that could fight against SARS-CoV-2 infection. As spike glycoprotein of SARS-CoV-2 plays a crucial role in receptor binding and membrane fusion inside the host, it could be a suitable target for designing of an epitope-based vaccine. SARS-CoV-2 is an RNA virus and thus has a property to mutate. So, a conserved peptide region of spike glycoprotein was used for predicting suitable B cell and T cell epitopes. 4 T cell epitopes were selected based on stability, antigenicity, allergenicity and toxicity. Further, MHC-I were found from the immune database that could best interact with the selected epitopes. Population coverage analysis was also done to check the presence of identified MHC-I, in the human population of the affected countries. The T cell epitope that binds with the respective MHC-I with highest affinity was chosen. Molecular dynamic simulation results show that the epitope is well selected. This is an in-silico based study that predicts a novel T cell epitope from the conserved spike glycoprotein that could act as a target for designing of the epitope-based vaccine. Further, B cell epitopes have also been found but the main work focuses on T cell epitope as the immunity generated by it is long lasting as compared to B cell epitope.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.269159

ABSTRACT

The FDA has granted Remdesivir (RDV, GS-5734) an emergency use authorization on the basis of an acceleration of clinical recovery in hospitalized patients with COVID-19. Unfortunately, the drug must be administered intravenously, restricting its use to those with relatively advanced disease. RDV is also unstable in plasma and has a complex activation pathway which may contribute to its highly variable antiviral efficacy in SARS-CoV-2 infected cells. A potent orally bioavailable antiviral for early treatment of SARS-CoV-2 infection is needed. We focused on making simple orally bioavailable lipid analogs of Remdesivir nucleoside (RVn, GS-441524) that are processed to RVn-monophosphate, the precursor of the active RVn-triphosphate, by a single step intracellular cleavage. In addition to likely improved oral bioavailability and simpler metabolic activation, two of the three new lipid prodrugs of RVn had anti-SARS-CoV-2 activity 9 to 24 times greater than that of RDV in Vero E6 cells


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.267781

ABSTRACT

COVID-19 and its causative pathogen SARS-CoV-2 have rushed the world into a staggering pandemic in a few months and a global fight against both is still going on. Here, we describe an analysis procedure where genome composition and its variables are related, through the genetic code, to molecular mechanisms based on understanding of RNA replication and its feedback loop from mutation to viral proteome sequence fraternity including effective sites on replicase-transcriptase complex. Our analysis starts with primary sequence information and identity-based phylogeny based on 22,051 SARS-CoV-2 genome sequences and evaluation of sequence variation patterns as mutation spectrum and its 12 permutations among organized clades tailored to two key mechanisms: strand-biased and function-associated mutations. Our findings include: (1) The most dominant mutation is C-to-U permutation whose abundant second-codon-position counts alter amino acid composition toward higher molecular weight and lower hydrophobicity albeit assumed most slightly deleterious. (2) The second abundance group includes: three negative-strand mutations U-to-C, A-to-G, G-to-A and a positive-strand mutation G-to-U generated through an identical mechanism as C-to-U. (3) A clade-associated and biased mutation trend is found attributable to elevated level of the negative-sense strand synthesis. (4) Within-clade permutation variation is very informative for associating non-synonymous mutations and viral proteome changes. These findings demand a bioinformatics platform where emerging mutations are mapped on to mostly subtle but fast-adjusting viral proteomes and transcriptomes to provide biological and clinical information after logical convergence for effective pharmaceutical and diagnostic applications. Such thoughts and actions are in desperate need, especially in the middle of the War against COVID-19.


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.27.269738

ABSTRACT

BackgroundAs of June 30, 2020, Malaysia had confirmed 8,639 cases of COVID-19. About 39% of these were associated with a religious mass gathering event held in Kuala Lumpur between February 27 and March 1, 2020, which drove community transmission during Malaysias main wave. We analysed genome sequences of SARS-CoV-2 from Malaysia to understand the molecular epidemiology. MethodsWe obtained whole genome sequences of SARS-CoV-2 from 58 COVID-19 patients in Kuala Lumpur, Malaysia, and performed phylogenetic analyses on these and a further 50 Malaysian sequences available in the GISAID database. Malaysian lineage B.6 sequences were further analysed with all available worldwide lineage B.6 sequences. ResultsNine different SARS-CoV-2 lineages (A, B, B.1, B.1.1, B.1.1.1, B.1.36, B.2, B.3 and B.6) were detected in Malaysia. The B.6 lineage was first reported a week after the mass gathering and became predominant (63%) despite being relatively rare (1.4%) among available global sequences. Increases in reported cases and community-acquired B.6 lineage strains were temporally linked. Non-B.6 lineages were mainly associated with travel and showed limited onward transmission. There were also temporally-correlated increases in B.6 sequences in other Southeast Asian countries, India and Australia, linked to participants returning from this event. We also report the presence of a nsp3-C6310A substitution found in 40.5% of global B.6 sequences which has associated with reduced sensitivity in a commercial assay. ConclusionLineage B.6 became the predominant cause of community transmission in Malaysia after likely introduction during a religious mass gathering. This event also contributed to spikes of lineage B.6 in other countries in the region. Author SummaryThe COVID-19 pandemic in Malaysia was driven mainly by transmission following a religious mass gathering held in Kuala Lumpur at the end of February. To study the genetic epidemiology of SARS-CoV-2 in Malaysia, we analysed 50 available and 58 newly-generated Malaysian whole genome virus sequences. We found that lineage B.6, rare (1.4%) globally, first appeared after the mass gathering and became the most predominant (62.9%) in Malaysia. Increases in COVID-19 cases and locally-acquired B.6 strains were temporally linked. Non-B.6 viruses were mainly associated with travel and showed limited spread. Increases in B.6 viruses in Southeast Asian countries, India and Australia were linked to participants returning from this mass gathering. Altogether, 95.3% of global B.6 sequences originated in Asia or Australia. We also report a mutation in the virus nsP3 gene found in 40.5% of global B.6 sequences and associated with reduced detection by a commercial diagnostic test. In conclusion, the religious mass gathering in Kuala Lumpur was associated with the main wave of COVID-19 cases of predominantly B.6 lineage in Malaysia, and subsequent spread of B.6 viruses regionally. Genome sequence data provides valuable insight into virus spread and is important for monitoring continued accuracy of diagnostic kits.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL